
CarnegieMellon
Software Engineering Institute

Custom vs. Off-The-Shelf
Architecture

Robert C. Seacord
Kurt Wallnau
John Robert
Santiago Comella-Dorda
Scott A. Hissam

May 1999

COTS-Based Systems Initiative

Technical Note
CMU/SEI-99-TN-006

DISTRIBUTION STATEMENT A
Approved for Public RS A

attribution Unlimited

******* mm**».

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or administra-
tion of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act of 1964, Title IX of
the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion, creed,
ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the judgment of the
Carnegie Mellon Human Relations Commission, the Department of Defense policy of "Don't ask, don't tell, don't pursue" excludes openly gay, lesbian
and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at Carnegie Mellon University are
available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA
15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, telephone
(412)268-2056.

Obtain general information about Carnegie Mellon University by calling (412) 268-2000.

Custom vs. Off-The-Shelf
Architecture

Robert C. Seacord
Kurt Wallnau
John Robert
Santiago Comella-Dorda
Scott A. Hissam

May 1999

COTS-Based Systems Initiative

Technical Note
CMU/SEI-99-TN-006

Unlimited distribution subject to the copyright

The Software Engineering Institute is a federally funded research and development center sponsored by the U.S.
Department of Defense.

Copyright 1999 by Carnegie Mellon University.

NO WARRANTY

THIS CARNEGIE MELLON UNIVERSITY AND SOFTWARE ENGINEERING INSTITUTE MATERIAL IS
FURNISHED ON AN "AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY MAKES NO WARRANTIES OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY MATTER INCLUDING, BUT NOT LIMITED TO,
WARRANTY OF FITNESS FOR PURPOSE OR MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED
FROM USE OF THE MATERIAL. CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF
ANY KIND WITH RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

Use of any trademarks in this report is not intended in any way to infringe on the rights of the trademark holder.

Internal use. Permission to reproduce this document and to prepare derivative works from this document for internal use is
granted, provided the copyright and "No Warranty" statements are included with all reproductions and derivative works.

External use. Requests for permission to reproduce this document or prepare derivative works of this document for external
and commercial use should be addressed to the SEI Licensing Agent.

This work was created in the performance of Federal Government Contract Number F19628-95-C-0003 with Carnegie
Mellon University for the operation of the Software Engineering Institute, a federally funded research and development
center. The Government of the United States has a royalty-free government-purpose license to use, duplicate, or disclose the
work, in whole or in part and in any manner, and to have or permit others to do so, for government purposes pursuant to the
copyright license under the clause at 52.227-7013.

Please refer to http://www.sei.cmu.edu/publications/pubweb.html for information about ordering paper copies of SEI
reports.

Carnegie Mellon University does not discriminate and Carnegie Mellon University is required not to discriminate in admission, employment, or
administration of its programs or activities on the basis of race, color, national origin, sex or handicap in violation of Title VI of the Civil Rights Act
of 1964, Title IX of the Educational Amendments of 1972 and Section 504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or
executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or administration of its programs on the basis of religion,
creed, ancestry, belief, age, veteran status, sexual orientation or in violation of federal, state, or local laws or executive orders. However, in the
judgment of the Carnegie Mellon Human Relations Commission, the Department of Defense policy of, "Don't ask, don't tell, don't pursue,"
excludes openly gay, lesbian and bisexual students from receiving ROTC scholarships or serving in the military. Nevertheless, all ROTC classes at
Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-6684 or the Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue,
Pittsburgh, PA 15213, telephone (412) 268-2056.

Obtain general information about Carnegie Mellon University by calling (412)-268-2O00.

Contents

Abstract

1 Introduction 1

Custom Integration 3
2.1 Problem #1: Integrating Java 2 Plug-in

and VisiBroker 4
2.2 Problem #2: Integrating COSNaming

and JNDI 6
2.3 Problem #3: Integrating Digital Certificates

and JNDI 6
2.4 Problem #4: VisiBroker ITS 7

Vendor Integration 8
3.1 Enterprise JavaBean Types and Persistence 9
3.2 Security 10
3.3 Distributed Transactions 12
3.4 EJB Evolution 12

Comparison
4.1 Product Selection
4.2 Changes to Business Logic
4.3 Upgrading
4.4 Changing Vendors

14
14
15
15
16

Conclusions 18

Appendix A: Acronym List

Acknowledgements

References

20

21

22

CMU/SEI-99-TN-006

CMU/SEI-99-TN-006

List of Figures

Figure 1 Sample flex point with design options 1
Figure 2 Content delivery design options 2
Figure 3 EJB Architecture 8

CMU/SEI-99-TN-006

iv CMU/SEI-99-TN-006

Abstract

Members of the COTS-Based System Initiative at the Software Engineering Institute have
developed the Generic Enterprise Ensemble (GEE), a generic approach to building
distributed, transaction-based, secure enterprise information systems (EIS). GEE is a tool to
help in the selection of technologies and architectural choices when building Enterprise
Information Systems. Enterprise JavaBeans (EJB) is a specification from Sun
Microsystems for an application server based on Java technology. In this paper, a comparison
is made between GEE based solutions and off-the-shelf solutions based on the EJB
specification.

CMU/SEI-99-TN-006

Vj CMU/SEI-99-TN-006

1 Introduction

The COTS-based systems (CBS) initiative at the Software Engineering Institute has worked
with a number of customers to help develop large enterprise systems. This experience
enabled the project to recognize common characteristics in these systems. In general, these
systems were all mission-critical distributed information systems with transactional and
security requirements. Furthermore, these systems consisted of clients requiring remote,
concurrent access to multiple, heterogeneous databases. The CBS initiative undertook the
development of the Generic Enterprise Ensemble (GEE) to provide a framework and
guidelines for developing this class of system from commercial off-the-shelf (COTS)
components.

The GEE consists of a collection oiflex points that represents "flexible" areas in system
requirements. For example, confidentiality may be a flex point in a given enterprise
application that needs to encrypt data. Each flex point consists of multiple design options -
each representing possible design approaches for implementing the functionality of the flex
point. Figure 1 shows a sample flex point for content delivery in the GEE. The content
delivery flex point defines three different design options for delivering system content to an
end-user of a system allowing for variation in network configurations, client platforms, and
application features. The details of the servlet, applet, and application design options are
illustrated in Figure 2.

Flex Point

Content Delivery

Figure 1 Sample flex point with design options

Each design option has one or more implementation options. Implementation options in the
GEE are normally represented as COTS-products choices, although at times custom
solutions are described. Implementation options for the applet design option, for example,
include a collection of products based around Netscape Navigator, Microsoft Internet
Explorer, or the Java Plug-in-technology from Sun that allows an applet to use Sun's Java
Runtime Environment (JRE) instead of the web browser's default virtual machine.

CMU/SEI-99-TN-006

Client

Servlet

Browser

I HTTP

Servlet 4

HTTP Server!

Applet

Applet <[

JVM

Browser

XHTTP

HTTP Server

Application

Application

JVM^

Business IIOP HOP HOP

Figure 2 Content delivery design options

Ideally, a system architect could simply select a collection of flex points. Each of these

selected flex points provides the architect with design options and COTS products as

implementation choices. According to these choices and based on system requirements, the
architect can choose an appropriate set of implementation options. Of course, things are
never this simple, as relationships and tradeoffs exist between design options and more often
between implementation options. For example, it is often the case that products from one
vendor integrate poorly with products from another vendor.

In reality, there is a need for roadmaps that can help to identify collections of mutually
compatible design and implementation options. Each of these roadmaps defines a system
architecture. The GEE, in fact, constitutes a selection tool used to choose an appropriate
architecture, based on system context and COTS product selection. When implementing a
solution using the GEE, the system integrator makes an informed selection of technologies
and implements the system using those selections. In contrast, Enterprise Java Bean (EJB)
can be thought of as a predefined "off-the-shelf architecture. EJB identifies a fixed
collection of pre-integrated technologies that are applicable to a broad range of enterprise
systems.

In this paper, we compare our experiences building a model application using the GEE, and
building the same application using EJB. The model problem selected was based on a
shipping company that developed an n-tier application that allows both employees and
customers of that company to track and review information about packages being handled by
the company. This model application included web-based access, defined user roles, and
secure access to distributed, heterogeneous relational databases. The comparison revealed
some of the fundamental tensions between the desire to define and control system
architecture, versus the convenience of outsourcing architectural decisions to commercial
product vendors.

CMU/SE1-99-TN-006

2 Custom Integration

The GEE is a method for building COTS-based systems that is flexible enough to satisfy the
different application needs of mission-critical distributed information systems using best-of-
breed technologies and components of interest to government and commercial enterprises.

The GEE consists of An Illustrated Design & Engineering Handbook and a collection of
working model problems. The handbook describes key design & engineering issues of
COTS-integrated systems using the "modern" enterprise as a foil to illustrate design &
engineering approaches. Model problems distributed with the GEE can be used as
application "starter kits."

As described in the introduction, the GEE delves down to the level of the integration of
specific products. As such, the GEE is a wasting asset that must be continually maintained by
a development organization. Maintenance of the GEE, however, can be best performed by a
single, shared resource within an organization. Lessons learned from implementing
organizations can be fed back to this group to improve future versions of the GEE. The
model problems distributed with the GEE can be used to establish this technology testbed.

In our work with various customers to help develop large enterprise systems, we found that
organizations needs to develop, communicate, and sustain a practitioner's view of the
enterprise architecture. In general, we found insufficient prescription in the technical
architecture beyond technology selection. In consequence, each project had to develop its
own interpretation and design approach and no common "vision" is communicated to
designers and engineers. We also found that most enterprises practiced an incomplete
approach to technology evaluation. More times than not, this resulted in an initial infatuation
followed by a lasting disenchantment with "technology-gizmos." The feasibility of
integrating these technologies is tested in live projects, often with fatal consequence. An over
emphasis on technology resulted in a corresponding lack of attention to business logic and
requirement analysis.

The GEE addresses the lack of prescription in the technical architecture by providing
concrete design patterns, sample implementations and use guidelines assist developers in
early formative design activities. The incomplete approach to technology evaluation is
extended by the introduction of an operational testbed that includes working
implementations of GEE variants—encouraging planned and rigorous technology evaluation.
Worked-out design alternatives helps the developers to focus on business logic and not
infrastructure implementation.

CMU/SEI-99-TN-006 3

The GEE starts with a conceptual design—an n-tiered system that provides application
engineers with high-level design guidelines for example, the role of business objects relative
to business services. The real focus of the GEE, however, is on the use of technical and
information architectures to build applications.

As discussed in the introduction, the GEE is adaptive through the use of flex points. These
are pre-planned to provide controlled adaptation. The GEE supports two kinds of flex point:
design flex points that support GEE adaptation to application-specific requirements and
implementation flex points that support GEE adaptability to alternative infrastructure
technologies

In the implementation of the model problem using the GEE we selected a collection of

implementation options that we considered being both representative and best-of-breed.

Specific technologies used in the implementation include: Java 2 Platform (JDK 1.2), Java 2

Plug-in, VisiBroker ORB, versions 3.2 and 3.3, VisiBroker Integrated Transaction Service
(ITS), VisiBroker Secure Socket Layer (SSL) Pack, RSA CryptoJ, Netscape Digital
Certificates, Netscape Directory Server (NDS), VisiBroker COSNaming service, Java
Naming and Directory Interface (JNDI), Oracle 8, and Microsoft and Netscape HTTP
browsers and servers.

This product and technology ensemble was reasonable and representative of selections made
frequently in practice. Surprisingly, we were unable to integrate this ensemble to the degree
that we had initially expected. We anticipated a variety of integration challenges, but we
were not prepared for the range of integration "dead ends" that we encountered. Some
illustrative examples are included in the following sections.

2.1 Problem #1: Integrating Java 2 Plug-in and VisiBroker
The GEE provides several design options for delivering system content to an end-user of a
system: applets, applications, and servlets. Applets are Java classes that run within the JRE
integrated into a client's browser. Applications are initially installed on the desktop but can
be run any number of times without additional downloads. Servlets are small, platform-
independent Java programs that can be used to extend the functionality of a Web server.
Servlets differ from applets in that servlets do not run in a Web browser or with a graphical
user interface (GUI). Instead, servlets interact with the servlet engine running on the Web
server through requests and responses. The request-response paradigm is modeled on HTTP.

CMU/SEI-99-TN-006

A number of the customers with whom we have worked to develop their enterprise systems
have made the decision to deploy their clients as applets. The reasons frequently given for

this selection include

• Browsers provide a familiar user interface for our clients.

• Applets support the creation and deployment of sophisticated, dynamic GUIs.

• Applets can communicate (securely if necessary) with backend servers using CORBA,
RMI, or other remote interfaces.

The first reason, in particular, is based on the assumption that browsers are a universal
paradigm [Seacord 98], are already installed on the client desktop, and are used to interface
with a variety of other applications and Web sites. Resultantly, applets are expected to work
with the browser the client has previously installed on their desktop. Unfortunately, the JDK
release of the JRE environment in the browser can be incompatible with the release used to
implement the applet. This is aggravated by the fact that most of the browsers seldom
include the latest JRE versions. We found exactly this problem when implementing the GEE
version of the model application. The applets in this system were implemented using the Java
2 platform, and this JRE was not integrated into either Navigator or Internet Explorer (IE).
Fortunately, this problem could be addressed through use of the Java Plug-in. The Java Plug-
in allows Java applets to run using Sun's JRE instead of the browser's default virtual

machine.

Unfortunately, the Java 2 Platform also incorporates an object request broker (ORB) that
conflicts with the VisiBroker ORB1. To execute a Java 2 application (or applet) that uses
VisiBroker, it is necessary to use the Xbootclasspath flag as an option to the Java
Virtual Machine (JVM). The Xbootclasspath flag is used to set search path for
bootstrap classes and resources. This allows the VisiBroker ORB classes to be searched
before the internal JDK libraries, ensuring that CORBA calls are bound correctly to
VisiBroker classes. This flag works fine from the command line or from the applet viewer
included with the Java 2 platform, but does not work from the Java 2 Plug-in. The
elimination of this flag effectively prevents the development of applets that use the Java 2
platform to communicate with a VisiBroker ORB. According to Tom Ball, the Java 2 Plug-in
development manager, this flag was purposely eliminated as it represented a security hole.
There is, of course, no problem using the Java 2 ORB in this scenario, except that it may lack
the features or the functionality of the VisiBroker ORB (interceptors, for example) that may

be useful elsewhere.

This problem is an example of overlapping functionality and unclear product boundaries. In
adding an ORB to the Beta 3 release of JDK 1.2, Sun has taken steps to make CORBA and
HOP ubiquitous on the Web, but has already impaired the customers ability to work with use

CORBA implementations from other vendors.

1 An unorthodox solution to this problem, suggested by Inprise, is to remove the ORB classes from
Java 2 runtime jar files.

CMU/SEI-99-TN-006

2.2 Problem #2: Integrating COSNaming and JNDI

The GEE uses JNDI to provide a federated name space consisting of the NDS LDAP server
and the VisiBroker COSNaming service. Federation of VisiBroker COSNaming was

impossible due to a lack of interoperability between the VisiBroker naming service and the

JNDI CORBA Service Provider Interface (SPI). The client was unable to get the context for
the VisiBroker naming service because VisiBroker did not implement the interoperability
proposal submitted to the Object Management Group (OMG) by Sun, IBM, and others
[INS 97]. Specifically, JNDI assumed a standard format for identifying the host and port
number of the form:

iiop://host:port

The VisiBroker naming service does not currently support this format, and in fact Inprise,
along with IONA, BEA, and DSTC have submitted a competing proposal for an

interoperable naming service to the OMG [INS 98]. There is some hope that outstanding
issues will be resolved prior to the release of the CORBA 3.0 specification from the OMG.

This problem does not exist using the JavalDL naming service included with the Java 2
platform since the vendor is the same in both cases (Sun) and both products implement the
standard proposed by that vendor.

2.3 Problem #3: Integrating Digital Certificates and JNDI

The NDS is used as a repository of digital certificates for client authentication purposes. As
part of the initial client authentication, Netscape provides a single sign-on solution using
digital certificates and an optional certificate server. For single sign-on, the Netscape server
has a list of authorized clients and their certificates containing public keys. When a client
authenticates to the server, the client presents data signed with its private key, and the server
verifies this signature using the public key in the certificate list.

However, using JNDI 1.1.1 and LDAP SPI 1.0.2, a client can not use certificates (strong
authentication) to authenticate to the Netscape Directory Server 3.1.2. The problem is that
LDAP SPI does not support certificates. During a period of several months when this
problem was being investigated by the project, several new versions of Netscape, JNDI, and
LDAP were released. Although these new versions have been substantially modified, none of
these changes has addressed this problem.

It is possible to circumvent JNDI and use LDAP directly as a repository for digital
certificates by removing JNDI. This eliminates the benefits derived from its use—a single
client interface to a federated name space.

CMU/SEI-99-TN-006

2.4 Problem #4: VisiBroker ITS

A serious limitation exists with the use of the VisiBroker ITS product, which is a pre-
integrated solution for providing Java-based transaction services to relational databases from

CORBA servers. Resultantly, it suffers from some of the same integration problems that we
experienced with our EJB solution. Specifically, the JDBC version 1.x driver used by ITS
does not support the interfaces required to perform two-phase commit. [Inprise 98] Failure to
support two-phase commit makes it impossible to support transactions to multiple databases,
even homogeneous databases. VisiBroker ITS did support two-phase commit in their C++
product line, but only for Oracle v7.3, while GEE was using Oracle v8.0.

On the one hand, these illustrate the same old lament that integrating COTS software is
"hard." On the other hand, our less painful experience (to date) with EJB offers a
counterexample that is worth noting.

CMU/SEI-99-TN-006

3 Vendor Integration

The JavaSoft EJB specification defines a component architecture for building distributed,
object-oriented business applications in Java. The EJB architecture addresses the
development, deployment, and runtime aspects of an enterprise application's life cycle.
Figure 3 is Sun's depiction of the EJB architecture at the JavaOne '98 conference.

Client

EJB
Home

EJB
Object

Enterprise '
JavaBeans™^"*'v

Component

Container

Database
or

Component

EJB Server

Figure 3 EJB Architecture

An Enterprise JavaBeanTM encapsulates business logic. Each enterprise bean is deployed
within a component framework, or container, that manages the details of security,
transactions, connection management, and state management. An EJB container handles low-
level details such as multi-threading, resource pooling, clustering, distributed naming,
automatic persistence, remote invocation, transaction boundary management, and distributed
transaction management. This allows the EJB developer to focus on the business problem to
be solved. An Enterprise JavaBean is, in essence, a transactional and secure remote method
invocation (RMI) or CORBA object, some of whose runtime properties are specified at
deployment using special classes called "deployment descriptors."

The EJB-based version of the model application was implemented using the BEA WebLogic
4.0 EJB server. WebLogic implemented the EJB 1.0 specification, including optional
features such as support for entity beans and container-managed persistence. Interestingly,
the technologies integrated by WebLogic are very similar to those selected for the GEE-
based version of the model application, including JNDI, JDBC, SSL, Access control lists

(ACLs) and HTTP servlets.

CMU/SEI-99-TN-006

Most of the integration problems we encountered in our best-of-breed integration approach
were already solved by the pre-integration of these technologies by BEA. BEA resolved
these integration issues by developing their own versions of key technologies, including
RMI, JNDI and SSL. As a result, the problems we encountered in our EJB-based
implementation of the model problem were, for the most part, independent from the
problems encountered in our custom integration.

3.1 Enterprise JavaBean Types and Persistence

The EJB 1.0 specification [Matena 98] defines two types of enterprise beans: entity beans

and session beans. Support for session beans is mandatory for EJB l.OeompIiant containers.
Support for entity beans was optional in EJB 1.0, but has become mandatory in EJB 1.1
[Matena 99].

Session beans exist for the life of a single client and the EJB server. Entity beans are
persistent objects that may be used by many users across crashes or shutdowns of the server
[Morgan 98].

An entity bean implements an object view of an entity stored in an underlying database or an
entity implemented by an existing enterprise application. The protocol for transferring the
state of the entity between the instance variables of an enterprise bean and the underlying
persistent representation is referred to as object persistence.

The EJB specification allows the bean producer to implement the bean's persistence directly
in the bean (bean-managed persistence) or delegate the bean's persistence to the container
(container-managed persistence). In bean-managed persistence, the bean producer
implements object persistence logic directly in the bean, including the creation and finder
methods. Creation methods must create records in the persistent store from data passed in as
arguments to the method. Finder methods must be able to formulate the proper queries to
locate the correct records in the persistent store and return a primary key or keys. In addition
to modification of creation and finder methods, the bean producer must also specify methods
to refresh the bean from the persistent store, to store the bean in the persistent store, and to
remove the bean from persistent store.

In container-managed persistence, the container-provider's tools are used to generate code
that moves data between the bean's instance variables and a database or an existing

application. The enterprise bean provider must specify the container-managed fields
property in the deployment descriptor to specify the list of instance fields for which the
container-provider tools must generate access calls. Using WebLogic, container-managed
fields in the deployment descriptor are specified as follows:

CMU/SEI-99-TN-006

containerManagedFields [prefixld prefix]

The mapping between instance variables and the underlying database is also specified in the
deployment descriptor. The following example shows that the instance variables prefix
and prefixld are mapped to corresponding columns in the e jbPref ix table in a JDBC-

managed database:

(persistentStoreProperties
persistentStoreType jdbc
(jdbc
tableName ejbPrefix
dblsShared false
poolName ejbPool
(attributeMap

prefix prefix
prefixld prefixid

); end attributeMap
); end jdbc

); end persistentStoreProperties

WebLogic provides a very restricted object to relational database mapping. Instance fields in
WebLogic can be mapped to a single table row in a particular table in a database. It is not
possible, for example, to create a bean using container-managed persistence that consists of
data from two tables with a shared a primary key. The mapping capabilities of EJB servers
are completely vendor-dependent, the EJB specification being quiet on the subject.
Arbitrarily complex mappings can be achieved using bean-managed persistence. The
problem is that, in our model application, implementing bean-managed persistence in a
single entity bean required over 600 lines of code, whereas container-managed persistence
could be implemented trivially in less than 20 lines. In a large, enterprise system with
hundreds or thousands of entity beans, the difference in development and maintenance costs

between the two persistence models would be staggering.

EJB server vendors appear to be deferring support for complex object to relational database
mappings to existing companies that specialize in this technology. TOPLink for BEA
WebLogic, from The Object People, claims to work with WebLogic and to support 10
different mapping types between entity beans and database tables including: direct-to-field,
1-1, 1-many, and many-many mappings. This technology is not yet generally available, and

we have no direct experience to support these vendor claims.

3.2 Security
The Enterprise JavaBeans architecture is designed to shift most of the burden of
implementing security management from the bean to the EJB container and server. In
particular, an enterprise bean's deployment descriptor includes access control entries that

allow the container to perform runtime security management on behalf of the enterprise

bean.

■10 CMU/SEI-99-TN-006

WebLogic offers encrypted, authenticated connections using SSL. Authentication takes place
at two levels: first, verifying that the communicating parties are who they say they are, and
second, verifying that each message exchanged is from the expected sender and has not been
altered.

WebLogic also provides ACLs to complement SSL features. ACLs provide a framework for
protecting resources. An ACL is a list of rules for access to operations on certain objects by
individuals and groups. An ACL allows an organization to define and organize permissions
and provides the framework for checking those permissions at runtime. If you are using
access control lists, you can write or adapt a realm that handles certificate-based
authentication.

To authenticate clients in a servlet or other server-side Java programs, the servlet developer
needs to verify that the client presented a certificate, and if that certificate was authorized by
a trusted issuer.

Since applets cannot easily access the certificate browser in which they run, authentication
from an applet is more difficult. WebLogic provides a special servlet that offers a solution by
allowing applets indirect access to the browser's certificate via the WebLogic Server. The
servlet captures the browser's certificate and reveals it only when a specific 64-bit token is
presented. It then creates an HTML page with an applet tag that passes the token as a
parameter.

The goal of the Enterprise JavaBeans architecture, as stated earlier in this section is to shift
the burden of implementing security management from the bean to the EJB container and
server. It is our opinion that this goal has not been realized. The EJB specification makes no
provisions for providing a secure client-side interface other than existing Java programming
language security APIs defined in the core package j ava. security. These APIs, by
themselves, are insufficient when managing a client side key store, supporting certificate
management, and providing a means of establishing a secure authenticated connection to the
EJB using SSL or any other security mechanism.

Security in WebLogic depends largely on the use of SSL and the use of browsers. WebLogic
does not provide the client side SSL interfaces that can be used to provide a secure,
authenticated connection between the client and the enterprise bean.

When using a browser, a user name and password is used for primary authentication after
which an SSL connection can be established using certificates managed by the browser. The
user name and password are sent in the clear, unless the bean provider provides the code to
snoop-proof the transactions. The password is used as a handle to identify a unique user and
to determine which system resources that user can access, based on ACLs. These passwords
are stored in clear text in the WebLogic property file. No mechanism is provided in the ACL

CMU/SEI-99-TN-006 11

implementation to allow resources to be accessed using authenticated digital certificates
rather than passwords, which are less secure.

Use of SSL and ACL in WebLogic is largely disconnected with no overriding security policy.

ACLs are based on user name and password whereas SSL is based on digital certificates.
Although EJB has made a promising start (by promising to provide security), significant
effort is required by both Sun and EJB vendors to provide a usable, out-of-the-box security
solution.

3.3 Distributed Transactions

As described in Section 2.4, JDBC 1.2 does not support XAtwo phase commit. As a result, it
is impossible for an EJB server using JDBC 1.2 to provide direct support for distributed
transactions.

It may be possible to implement distributed transactions to a homogenous database by using
an underlying XA manager within a particular database. Oracle, for example, allows you to
refer to a table on another server. This is transparent to the both WebLogic and VisiBroker
ITS so they are unimpaired by the lack of a two-phase commit in either product.

Support for distributed transactions has been added as an extension to the JDBC 2.0 API
[White 98]. This feature allows a JDBC driver to support the standard two-phase commit
protocol used by the Java Transaction Service (JTS).

Supporting distributed transactions in heterogeneous databases requires a transaction
coordinator that understands two-phase commit, but more importantly it requires JTA-
compatible transactions resources to support distributed transactions across heterogeneous
databases, messaging services, and other data resources.

Adding support for two-phase commit to a database driver is difficult, especially without the
cooperation of that vendor. In most cases, developers are relying on the vendor to provide the
database driver—Oracle for an Oracle JDBC driver and Sybase for a Sybase JDBC driver.
Currently, middleware vendors are far ahead of the database vendors in supporting
distributed transactions. For Java-based distributed transactions to succeed, database vendors
will need to catch up.

3.4 EJB Evolution

EJB is a relatively new technology, but based on our experiences with Java, CORBA, and
other technologies, it is possible to anticipate some trends. Current EJB servers implement
version 1.0 of the EJB specification. This technology is extremely new and evolving rapidly.
For example, during the course of our experiment (a period of several months) several minor
revisions of WebLogic were released, the original vendor (WebLogic) was purchased by
another company (BEA), the name of the product changed (from Tengah to WebLogic), and

12 CMU/SEI-99-TN-006

a major version (version 4.0) was released. New releases of WebLogic appear to correct bugs
with earlier features and add functionality but also introduce new bugs. Public drafts of
version 1.1 of the EJB specification were made available in late spring of 1999, which is
significantly expanded from the EJB 1.0 specification. Major changes from the EJB 1.0
specification include:

• support for entity beans has been made mandatory

• tightening and clarification of the specification in some areas to make implementations
by different EJB server vendors more consistent

• modifications to the content of the deployment descriptor to better map into the bean
provider, application assembler and deployer roles

• replacement of the JavaBeans™ architecture-based deployment descriptor format with
an XML technology-based format.

As a result of these and other changes EJB products may change radically - requiring
significant revision of existing applications. Major changes will also result from the
introduction of the EJB 2.0 specification in 2000 and the migration from the JDK 1.1 base to
the Java 2 Enterprise Edition (J2EE) platform.

CMU/SEI-99-TN-006 13

4 Comparison

In this section, we provide a comparison between building an application using the GEE and
using EJB based on our experiences in developing the model application using both

technologies. In particular, we examine the impact of both approaches on a number of
development and maintenance tasks in an attempt to characterize the overall impact of the

paradigm shift.

In comparing the custom integration and EJB solutions, it is interesting to note that our

system objectives were not achieved in either case. Both approaches failed to support
distributed transactions across homogenous databases, let alone heterogeneous data sources.

4.1 Product Selection

In component-based software engineering, the software development process includes the
evaluation and selection of COTS components.

Product selection is a lengthy and arduous process. The first step of the process is to
determine what are the best-of-breed components. The next step in the process is to
determine if these products can be integrated, either directly, or through wrappers or other
"glue" code. Determining if products can be integrated is also a complex process, as vendor
claims are not always believable. If these products can not be easily integrated, it is
necessary to consider alternate products that may not be best-of-breed but are compatible
with other technologies. To make matters worse, the environment is constantly changing with
new products and emerging product versions, existing products going away or being
refocused, and evolving vendor relationships. Use of EJB simplifies this process by
removing the combinatorics involved in the selection process.

Today, a number of vendors exist that have products that support EJB technology or have
announced support for EJB in future product releases. Among these vendors are BE A
Systems, IBM, Inprise, Netscape, and Sun Microsystems. Each of these products represents a
pre-integration of components. These pre-integrated systems can then be evaluated as a
whole, simplifying the evaluation and selection process. In effect, the granularity of products

being evaluated has increased.

Selection of an EJB approach takes the decision as to what constitutes a best-of-breed
solution out of the hands of the system integrator. If, for example, BEA had the best support

for distributed transactions while IBM had the best object persistence, it is unlikely that
these individual components could separated. An even greater dilemma may arise if one

14 CMU/SEI-99-TN-006

vendor had the best overall solution, but was lacking in a critical feature (such as strong
authentication) that prevented its use. In this case, it might be necessary to use a product that
was largely not competitive, but offers this one special feature. This exposes the customer to

other risks—that the selected product will not have sufficient market share to survive.

4.2 Changes to Business Logic
For many enterprise systems, business logic tends to evolve over the life of the system. An
example of this is a system for preparing tax returns, where changing tax laws require that
the business logic be updated each year. More commonly, business logic needs to be re-

implemented to reflect evolving business practices.

Changing business logic in EJB is considerably easier than in the best-of-breed solution. This

is true because EJB provides a relatively well-defined component model [Brown 98] that
promotes the separation of business logic from the underlying services such as transactions,
persistence, and security. Although the GEE does implement wrappers to these services,
these calls are often interwoven through the business logic. This requires the maintainer to
understand the purpose and function of these services to ensure that changes to business
logic do not impact their operation.

In EJB, the container automatically provides most of these services. When the container fails
to provide these services in a robust and flexible manner, business logic can become
intertwined with calls to system services as in the GEE. Container-managed persistence, for
example, allows the resulting system to be independent from the underlying data source. If
the mapping between an enterprise bean and the underlying data source is too complex to be
managed by the container, we have to hand code persistence using bean-managed
persistence. In the process, the independence between our system and the data source is lost
and it becomes subsequently harder to adapt the enterprise bean to a different data source.

4.3 Upgrading
The one constant aspect of component-based software development is change. Constituent
components are constantly evolving-new products are emerging while existing products
become dated or obsolete. Keeping existing systems "current" is a difficult but necessary
maintenance task. In maintaining a best-of-breed solution, the maintainer needs to
continually monitor the marketplace to evaluate new technologies, new products, and new
releases of component products and upgrade the system when appropriate. These skills are

similar to skills required to initially develop these systems.

In the case of EJB, the server vendor is in reality maintaining a best-of-breed solution, even

if some or all of the components are developed in-house. The EJB vendor decides which

component versions to include and performs the integration and testing.

CMU/SEI-99-TN-006 15

Rather than track new releases of all component products, a person maintaining an EJB-
based system only needs to be interested in new releases of the EJB server used. EJB servers
from other vendors that may overtake the previously selected server in functionality,
performance or other "ilities" should also be monitored, in the event that a significant delta
in capabilities would justify a migration. Implications of migrating between EJB server
implementations are discussed later in this section.

While an EJB solution simplifies the problem of tracking the evolution of multiple
component products (and their competitors), it also reduces the flexibility system
maintainers have in selectively upgrading component versions to incorporate new
functionality.

4.4 Changing Vendors

The promise of open systems is that a system integrator or maintainer can switch to an

alternate vendor if the initial vendor fails to support, maintain, and enhance a product in a
satisfactory manner. Open systems are based on standard interfaces-allowing an application
to be quickly ported to an alternate implementation. Both the GEE and EJB solutions are
based on a collection of open standards, including CORBA, RMI, Internet Inter-ORB
Protocol (HOP), and SSL. But, how easy is it to port these systems to alternate
implementations of these standard interfaces?

During the development of GEE, we found that it is often difficult to intermix technology
from different vendors. For example, the two principal browsers in use today, Microsoft
Internet Explorer and Netscape Navigator both support SSL, but differ significantly in the
manner in which they support digital certificates [Seacord 98]. Changing one product can
often lead to a cascading effect where numerous other products are impacted. This can result
from something as simple as a new product requiring a later release of the JDK, in turn
requiring that other products be upgraded to work in the same environment. Isolation and
wrapping of components can be used to reduce the impact of these changes, but this is not
always feasible.

As EJB is a standard, one might expect that portability between EJB implementations would
not be an issue. Unfortunately, the EJB specification is extremely porous in many areas and
deliberately vague in others. This may have resulted from an attempt to accommodate
existing differences in application servers or to provide an opportunity for EJB server
vendors to differentiate them in the market. Regardless of the cause, holes in the
specification provide the rocks upon which source code portability crashes and sinks. In the
EJB specification, for example, there is no mention of what virtual machine should be used.
As a result, existing EJB servers are based on both JDK 1.1 and JDK 1.2. EJB is defined
largely by underlying JDK APIs such as JTS, JDBC, RMI, JJDL, JNDI and JMAPI2. These

See Appendix A: Acronym List.

16 CMU/SEI-99-TN-006

APIs have changed significantly in JDK 1.2, and as a result, portability between EJB servers

based on different JDKs is seriously degraded.

Problems porting today from EJB servers based on JDK 1.1 to EJB servers based on JDK 1.2
should be indicative of problems upgrading to new JDK 1.2 versions of EJB servers in the

future.

We have also found more subtle differences in other interfaces. For example, the RMI API

can use different middleware protocols, like the native Java Remote Method Protocol
(JRMP) or HOP. Unfortunately, different capabilities in IIOP and JRMP make it difficult to
hide the underlying protocol from users of the RMI API.

While many of these problems are easily discovered and remedied, semantic differences also
exist between EBJ servers, particularly in what can be expressed in the deployment
descriptors. For example, some servers support user control over object pools and some do
not. The deployment descriptor for servers that support pooling control have a property for
the number of instances of a bean in the pool, while this property is absent from deployment
descriptors of servers without pooling control. The only solution, in this case, is to move
functionality from the deployment descriptor to the source code—which could be a rather
unpleasant task.

Portability for both the GEE and EJB solutions can be problematic, depending on the extent
to which non-standard extensions to products are used, and differences in vendor
interpretations of specifications. It may be easier in GEE to replace a given component, such
as a browser than to make a wholesale port from one EJB vendor to another since all aspects

of the system may be effected.

CMU/SEI-99-TN-006 17

5 Conclusions

In general, we have had greater success using technologies that have been pre-integrated by a
single vendor than we have had integrating best-of-breed products ourselves. While this
could be simply explained as a lack of skill on the part of our integration team, we would
like to believe that there are other factors involved.

Integration vendors have options available to them that are not normally available to

application developers. An established middleware vendor such as BEA can leverage other

vendors to resolve integration issues prior to releasing an integration framework.

BEA took a different approach to integration in that they developed their own versions of key
technologies, including RMI, JNDI, and SSL. Although this approach allows BEA to
seamlessly integrate their technology, this option is not normally available to an application
development team due to cost and other factors. Interestingly, the BEA WebLogic product
also fails to provide a 2-phase commit protocol because of their dependency on JDBC 1.2
[Tengah 99].

Given time and coinciding vendor interests, the problems we experienced in the custom
integration of best-of-breed technologies can be resolved. However, the best-of-breed
integration effort is effectively held hostage to the whims of vendor priorities—a state of
affairs that is not always conducive to the use of these technologies in enterprise
applications. Problems resolved for a particular set of product versions often resurface in
different forms in later versions of these same products.

If an enterprise does not have a large number of product selection constraints that must be
satisfied and can accept an integrating vendor's product choices, technologies such as EJB
can be a good solution. In this case, the value added in integration can outweigh the
constraints imposed by a fixed architecture or product constraint.

However, there are situations where best-of-breed or "latest and greatest" versions of
products are essential to satisfy system requirements. In these cases it is important to
maintain control over application architecture and technology selection decisions—
regardless of increased integration costs.

Another dimension of the question of building or buying an architecture concerns the types

of technology competencies an organization must build to define and maintain an enterprise
information system. The technology competency required to integrate HTTP

18 CMU/SEI-99-TN-006

browsers/servers distributed transactions, distributed objects (Java and CORBA), naming
and directory services, system management, and database can be daunting. Moreover, this
competency is a wasting asset—technologies change and force us to continually reacquire
technology competency. If there is no overwhelming need to develop competencies in these
areas, an EJB solution may allow an organization to focus on its key business processes.

Lastly, there are business implications associated with so-called "vendor lock." On one hand,
EJB represents an "open" interface specification (one of the goals of EJB is to allow
Enterprise JavaBeans to be deployable across all vendor containers). On the other hand,
there is a slippery slope in using vendor specific enhancements that can effectively lock the
evolution of the product to a particular product-line. Still, integration frameworks based on
open system interfaces holds tremendous promise.

CMU/SEI-99-TN-006 19

Appendix A: Acronym List

; Acronym

CBS

Definition

COTS-based systems

COTS commercial off-the-shelf

CORBA common object request broker architecture

EJB enterprise Java Bean

GEE generic enterprise ensemble

MOP internet inter-ORB protocol

IOR interoperable object reference

ITS integrated transaction service

JDBC Java database connectivity

JIDL Java interface definition language

JMAPI Java management API

JNDI Java naming and directory interface

JRE Java runtime environment

JRMP Java remote method protocol

JVM Java virtual machine

LDAP lightweight directory access protocol

NDS Netscape directory server

ORB object request broker

RMI remote method indicator

SSL secure socked layer

20 CMU/SEI-99-TN-006

Acknowledgements

The authors acknowledge the work of the GEE project team members: Tom Boyea and Fred
Long.

CMU/SEI-99-TN-006 21

References

Brown 98 Brown, Alan W. & Wallnau, Kurt C. "The current state CBSE." IEEE

Software, (September/October 1998).

Inprise 98 VisiBroker Integrated Transaction Service Programmer's Guide, Inprise
Corporation, Scotts Valley, CA. 1998

INS 97

INS 98

Interoperable Naming Service, Version 1.5, June 6, 1997.

Interoperable Naming Services, BEA Systems, Cooperative Research Centre

for Distributed Systems Technology, Inprise Corporation, IONA
Technologies, PLC, October 19, 1998.

Karpinski 98 Karpinski, Richard. "Sun to Fix Flaws in Java Beans." Internet Week, 736
(October 1998).

Matena 98 Matena, Vlada & Hapner, Mark. Sun Microsystems Enterprise JavaBeans,
Version 1.0. March 21, 1998.

Matena 99 Matena, Vlada & Hapner, Mark. Sun Microsystems Enterprise JavaBeans,
Version 1.1 Public Draft. May 7, 1999.

Morgan 98 Morgan, Bryan. Enterprise Java Beans: Coming soon to a server hear you.

Java World. Available WWW <URL:
http://www.javaworld.com/javaworld/jw-06-1998/jw-06-distributed.html>

(June 1998).

Seacord 98 Seacord, Robert C. & Hissam, Scott A. "Browsers for distributed systems:
Universal paradigm or siren's song?" World Wide Web Journal, Volume 1

(1998), Baltzer Science Publishers BV: 181-191.

Stehlo 98 Strehlo, Kevin. "Let Java Middleware Juggle Your Tiers." JavaPro,

(February/March 1998).

Tengah 99 Using Tengah Enterprise JavaBeans, WebLogic. Available WWW <URL
http://www.weblogic.com/docs/classdocs/API_ejb.html> (June 99)

22 CMU/SEI-99-TN-006

White 98 White, Seth & Hapner, Mark. JDBC TM 2.0 API, Sun Microsystems Inc.,
May 1998.

CMU/SEI-99-TN-006 23

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering
and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of
information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite
1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (LEAVE BLANK) 2. REPORT DATE

July 1999

3. REPORT TYPE AND DATES
COVERED

Final
4. TITLE AND SUBTITLE

Custom vs. Off-The-Shelf Architecture
5. FUNDING NUMBERS

C —F19628-95-C-0003

6. author(s)

ROBERT C. SEACORD, KURT WALLNAU, JOHN ROBERT, SANTIAGO COMELLA-

DORDA, SCOTT A. HISSAM

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

8J PERFORMING ORGANIZATION
REPORT NUMBER

CMU/SEI-99-TN-006

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

HQ ESC/DIB
5 Eglin Street
Hanscom AFB, MA 01731 -2116

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

11. SUPPLEMENTARY NOTES

12. A DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified/Unlimited, DTIC, NTIS
12.B DISTRIBUTION CODE

13. ABSTRACT (MAXIMUM 200 WORDS)

MEMBERS OF THE COTS-BASED SYSTEM INITIATIVE AT THE SOFTWARE ENGINEERING INSTITUTE HAVE DEVELOPED THE GENERIC

ENTERPRISE ENSEMBLE (GEE), A GENERIC APPROACH TO BUILDING DISTRIBUTED, TRANSACTION-BASED, SECURE ENTERPRISE INFORMATION

SYSTEMS (EIS). GEE IS A TOOL TO HELP IN THE SELECTION OF TECHNOLOGIES AND ARCHITECTURAL CHOICES WHEN BUILDING ENTERPRISE
INFORMATION SYSTEMS. ENTERPRISE JAVABEANS™ (EJB) IS A SPECIFICATION FROM SUN MICROSYSTEMS FOR AN APPLICATION SERVER

BASED ON JAVA TECHNOLOGY. IN THIS PAPER, A COMPARISON IS MADE BETWEEN GEE BASED SOLUTIONS AND OFF-THE-SHELF SOLUTIONS

BASED ON THE EJB SPECIFICATION.

14. SUBJECT TERMS

COTS, Generic Enterprise Ensemble (GEE), Enterprise Java Beans (EJB),
Java

15. NUMBER OF PAGES

20

16. PRICE CODE

17. SECURITY CLASSIFICATION
OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z39-18
298-102

